Amid the COVID-19 pandemic, the world is grappling to flatten the curve so that the healthcare resources aren’t stretched too thin. We aren’t just betting on social isolation and eventual herd immunity to manage these unprecedented times. Scientists worldwide are working round the clock to come up with cures and vaccines. However, developing a safe, affordable vaccine or cure is a time-consuming process despite our best minds on it.
Governments and pharma companies are exploring different technologies to expedite their efforts. They are already leveraging big data for contact tracing and controlling community transmission. As scientists come up with different vaccines and cures for the coronavirus, it’s also equally important that clinical trials happen faster than ever before.
In this blog, we will look at how advanced analytics is addressing the key challenge in routine clinical trials.
Clinical trials used to have only structured data that was clinically-sourced. To organize and mine this data, the R&D teams didn’t need much application of big data and advanced analytics.
Over the last couple of years, clinical trials have moved to the cloud and there is far more data available. Trial patient participants can also be remotely monitored through healthcare gadgets. The total volume of health data in the world is expected to soar to 2,314 exabytes by 2020, 15 times what it was in 2013. By some estimates, if this data were stored in a stack of tablet computers, the stack would reach 82,000 miles high.
Despite more data, only a fraction of it was being leveraged as the organizational and management model of clinical trials hadn’t really changed much. One of the primary reasons for that was how slow this industry had been to adopt some of the latest technologies due to its risk-averse and siloed nature.
With this new influx of vast amounts of data from multiple, unintegrated systems (EMRs, genetic profiles, phenotypic data, mHealth devices, etc.), it’s necessary to use advanced analytics to visualize and leverage data in real-time and gain a comprehensive view of the performance of the trial and the entire clinical portfolio.
Advanced analytics can be the key to understanding the unstructured, real-world data. It can be employed to create all the required metrics and identify trends, anomalies, and risks for a 360-degree view to the stakeholders.
Clinical trial data scientists can leverage centralized monitoring and CDISC standard datasets to collect data more efficiently in real-time. Instead of the analytics used for standard risk-based monitoring, they can provide better analytics. To enable quick identification of the patterns and issues, they can implement ongoing, sophisticated, and accurate monitoring reports.
By exploring data for unexpected patterns, evidence for known relational trial factors can be deepened. Such patterns can then lead to new hypotheses and provide deeper insights into the suitability of the treatment. Following are some of the ways that advanced analytics can create value in clinical trials:
Advanced analytics is enabling better strategic and operational decisions in clinical trials. Allowing continuous supervision of the study, it’s empowering study managers to do an in-depth analysis and review of the data.
Data managers can now do more than just manage the data. They can identify new patterns that lead to new hypotheses and then quickly analyze data to validate them.
For instance, when the National Cancer Institute (NCI) set up a prototype project to explore the relationship between genes and cancer, NCI was able to search a 4.5 million cell matrix in 28 seconds. This enabled NCI to gain a deeper understanding of the network of gene-cancer interactions and the state of research in relation to cohort groups treated.
Amid this pandemic, data is enabling faster connections with patients. With advanced analytics, the results are faster and more targeted site and patient recruitment.
Pharma companies are exploring ways to pull data from what is being observed with patients undergoing treatment. This way, they are creating large-scale COVID-19 RWE studies that are enabling a more patient-centric approach to creating potential cures.
As testing becomes more prevalent, they will have more data to leverage. Leveraging real-time, data-driven decision making, the pharmaceutical industry hopes to identify effective therapies as soon as possible.
If you have any questions about analytics and how it can be leveraged, please feel free to get in touch with one of our experts.
Rakesh Reddy is our co-founder and a serial entrepreneur. A mechanical engineer by education, his business vision and direction as Chairman & CEO drives us to excellence. An avid team player, he works with his executive team to trigger growth for Acuvate across geographies and business areas. His business acumen, strategy and planning skills catalyzed the growth of Acuvate since its inception. A natural leader, he has been able to successfully bootstrap his companies, help win customers and successfully constitute company’s board and a robust leadership team.
Subscribe to our monthly newsletter to get the latest updates directly to your mailbox!
Rakesh Reddy